
4 C
h
a
p
te

r
Debian releases and archives

Look, this is Debian. They don’t release things until you have to

fire rockets at the thing to stop it from working.

— MrNemesis on Slashdot

Probably the two most common facts to hear about Debian is that it is hopelessly
outdated and stable as a rock. In the Debian world, these two traits are actually
one and the same, and it would be difficult to argue against either one. Already at
the time of release of a new Debian version, the software it contains is usually not
current. In the world of free software, where improvements, fixes, and new fea-
tures are added to projects on a daily basis, this may have negative consequences.
However, in productive environments, new features and improvements can often
backfire. Thus, the Debian stable release focuses on software stability, rather than
trying to surf the cutting edge with possibly buggy and untested software. Only
security-related bug fixes are allowed in.

103

4 Debian releases and archives

Debian stable is not the only Debian release. In addition, the archive provides two
other ones: testing and unstable. While these are not really released in the way
that stable is frozen and termed official, they are publicly available and in use by
many people1 . Before inspecting each of the Debian releases in turn, it is important
to define what stability means with respect to Debian, or what instability the name
unstable is trying to coin.

In the context of a software and distribution archives, stability can refer to one of
three aspects:

Software runtime stability
Most commonly, the term stability is used to refer to the reliability and ro-
bustness of software contained in the archive. Stable software is mature
software with an extremely low number of bugs (there is no such thing as
bug-free software). Runtime stability is what keeps users happy.

Software feature stability
Stability may also refer to the feature set provided by a software. In this
definition, stable software does not introduce drastic changes or radical new
features from one release to the next. Administrators appreciate feature
stability because it allows them to fix bugs with newer versions without
risking unwanted changes to the behaviour.

Archive stability
A software distribution archive can be termed stable if the set of packages
or pieces of software it provides does not fluctuate. Furthermore, archive
stability also includes the relationships among the contained packages. A
stable software distribution archive does not grow or shrink in size, and up-
dates only affect individual packages, not larger parts of the archive. Archive
stability allows for official releases to happen.

The canonical Debian release names “stable” and “unstable” refer to the second
and third definition of stability, although the first sense of stability is implicit to
a certain extent. While Debian developers upload new packages to unstable on a
daily basis, and drastic changes to the packages and pieces of software they provide
are possible (albeit rare), once a Debian release becomes stable, no packages will
be added or removed to or from the set. Furthermore, as a function of Debian’s
security update policy (see chapter 7), updates to individual packages are limited
to security-grade bug fixes and must not affect the feature set (or fix non-security)
bugs. Fixes to inconvenience bugs, new versions, and new software as a whole are
held back until the next Debian release is promoted to Debian stable.

The first of the above three aspects of stability results from the Debian release
cycle, which we shall unfold in an instant. For a package to be included in stable,

1The term “release” is frequently used to refer to self-contained archives in the domain of software
development.

104

4.1 Structure of the Debian archive

it must be free of critical bugs and have received several months worth of testing.
While the runtime stability of a software is purely in the hands of the upstream
author, the rigorous testing and quality control applied throughout the Debian
release cycle ensures an acceptable level of runtime stability across all programmes
included in Debian stable.

The three archives, stable, testing, and unstable are naturally related. A normal
package traverses all three (in reverse order). To help understand the process, it is
useful to look at a package life cycle, from the moment the maintainer finishes and
uploads it until it is immortalised on the media of an official Debian release.

4.1 Structure of the Debian archive

First, let us identify the different directory hierarchies and their purpose in the
Debian archive. The archive is split into two main hierarchies, rooted at /pool and
/dists. All the packages and source files reside under /pool, whereas the index files
are located in /dists. This separation was instituted when testing was introduced
(which happened between the release of potato and woody). Some packages
have equivalent versions in multiple releases and it is less of a waste of space to
store packages in a common pool and reference them individually from the release
indices.

An excerpt of the structure of a Debian mirror is shown in the tree diagram in
figure 4.1.

Figure 4.1:

A tree diagram

showing excerpts of

the Debian archive

105

4 Debian releases and archives

4.1.1 The package pool

The /pool hierarchy is divided up into three sections: main, contrib, and non-free.
The hierarchy is further subdivided at the next level into subtrees according to the
first letter of the contained packages. Within each single-letter directory there are
directories for each Debian source package. For instance, files related to apache2
are located in /pool/main/a/apache2. An exception is made for libraries, which
sort into different subtrees, rooted at lib? (where the question mark is a wildcard).
For example, binary packages generated from the libxml source package are found
below /pool/main/libx/libxml.

At this point it is useful to identify the two different types of package found in
Debian: source and binary packages. At the same time, there are native and non-
native or external packages. It will all become clear in an instant! The maintainer
transforms a software into a source package. Source packages are not The Debian
package format (DEB) files but rather the combination of their source files. In the
case of an external (non-native) package, a source package is made up of:

*.orig.tar.gz
The .orig file is a tarball containing the software in the way its (upstream)
author released it.

*.diff.gz
The diff file encapsulates the changes needed to debianise a software. After
applying the patch (a diff file is a patch), the software can be packaged for
Debian with standard Debian tools.

*.dsc
The dsc file provides the essential information to describe a source pack-
age, including the MD5 sums of the orig and diff files. It is signed by the
maintainer and authenticates an upload2.

Software that was specifically written for Debian does not need to be debianised.
Therefore, the diff file does not exist and the orig file is replaced by a tarball, which,
when unpacked, can be used directly to produce a Debian binary package.

With the information stored in the ./debian subdirectory of a debianised source
package, the Debian maintainer tools can produce a DEB file containing the soft-
ware installable on and tailored for a Debian system. A DEB file is always a single
binary package. A Debian source package can produce more than (but at least) one
binary package. For instance, many libraries are split across three binary packages
all generated from the same source package: libfoo1, libfoo-dev, and libfoo-doc.

2In combination with the buildd’s, the dsc file serves to identify an upload entity. For architectures
other than the maintainer’s native one, the dsc file is signed by the administrator of the buildd (see
chapter 4.2).

106

4.1 Structure of the Debian archive

The Debian archive currently contains about 15 000 binary packages generated
from about 10 000 source packages.

4.1.2 Package indices

The /dists hierarchy provides the index files needed for APT to work and find DEB
files to download3. A separate index is provided for each combination of the fol-
lowing four parameters:

the release name, such as stable or sarge.

the section, such as main.

the target architecture.

package type: source or binary.

The archive uses subdirectories to map these parameters to files, so finding the
appropriate index file is a matter of climbing down the directory tree rooted at
/dists based on these parameters.

On the first level there are the different releases with symlinks for the canonical
names. For instance, when sarge is released, stable will be a symlink to sarge. Addi-
tional directories at that level include experimental and stable-proposed-updates.
We will return to these in chapter 4.4.1 and chapter 4.4.4 respectively.

Below each release directory there are subtrees for the three sections which resem-
ble the /pool hierarchy. The separation of all files within each release according
to their degree of freedom is an important prerequisite to being able to produce
or deploy archive snapshots with specific licence requirements. Also in the release
directories are the Contents files, which map the files installed on the filesystem
to the providing package. Tools such as apt-file (see chapter 5.4.4) use this in-
formation, and grep can usually extract all necessary information from this file as
well.

In each section’s directory, there are several subdirectories for the indices of binary
packages as well as the directory for the source index. The index file is called
Packages in all cases and contains the information of all available packages in the
part of the archive identified by the four parameters.

For instance, /dists/stable/main/binary-i386/Packages contains the package de-
scriptions for all binary packages in main, which can be installed as part of the sta-
ble distribution on the i386 architecture. Similarly, /dists/sid/contrib/source/Pack-
ages references all source packages in contrib which are contained in sid. The
architecture does not matter for source files.

3The package indices are not to be confused with the /indices directory found on the mirror; the
latter indexes file in the mirror filesystem, while package indices index Debian packages stored therein.

107

4 Debian releases and archives

4.1.3 The Release files

The /dists directory of a Debian mirror is home to the index files for the various
releases provided by the mirror. Each such release is additionally described by a
Release file, which contains important data about the release. The Release file of
the woody ’s third release looks like this:

˜# cat Release

Origin: Debian

Label: Debian

Suite: stable

Version: 3.0r3

Codename: woody

Date: Mon, 25 Oct 2004 17:56:29 UTC

Architectures: alpha arm hppa i386 ia64 m68k mips mipsel powerpc s390 sp

arc

Components: main contrib non-free

Description: Debian 3.0r3 Released 25th October 2004

MD5Sum:

[...]

The Release file is used mainly by APT, which determines the architectures and
components available from the mirrors specified in /etc/apt/sources.list using these
files. Also, when mixing releases (see chapter 8.2), the various data can be used to
specify criteria for pins. Finally, the file contains the checksums of all index files
associated with the release. As shown in chapter 7.5, these checksums can be used
to verify the integrity of packages downloaded from a Debian mirror.

4.2 The package upload

A Debian package has a life cycle, and a long way to go before it is distributed as
part of the Debian stable release. Figure 4.2 illustrates how the different archives
and components of the Debian infrastructure work together. You need not under-
stand it all, but it may come in as a handy reference.

Following the debianisation process, a maintainer transfers the source files (along
with the DEB file for the build architecture4) to one of the available upload queues.
On the side of the accepting server, the Debian queue daemon moves the files to
the unchecked directory at regular intervals. This directory is the domain of katie
and friends5, which verify that the uploaded package is signed with a trusted signa-
ture, and run a number of sanity checks on the package. On successful verification,

4This is required to make sure that no maintainer uploads without building the package locally first.
At time of writing, the binary packages created by the maintainer directly propagated into the unstable
archive. For all other (applicable) architectures, the build daemons are expected to generate the binary
package(s) from the source package. Please see chapter 7.5 for security implications.

5katie and friends are a set of scripts named after female celebrities which work hand

108

4.2 The package upload

the upload is moved to the incoming directory, which is accessible over the Web6 ,
but which should not be used as a package source except in special circumstances.

Figure 4.2:

The life cycle of a

Debian package

(based on the work of

Kevin Mark)

When an upload hits incoming, the build daemons (referred to as buildd) are noti-
fied7. There is at least one build daemon for each architecture that Debian supports
(see chapter 4.5), and its job is to compile the software and produce a DEB file spe-
cific to the respective architecture. The resulting DEB is accompanied by a file
describing it (the .changes file8 , which has to be signed by the administrator of the
buildd). Finally, the package file is submitted to the upload queue and trickles into
unstable as previously noted.

On a daily basis, dinstall moves available package files from incoming to the ap-
propriate locations of the Debian pool (the /pool directory of every Debian mirror).
It then updates the index files of the archive. Subsequently, the new packages are
available from the unstable archive via APT.

in hand on the various tasks surrounding the management of the Debian archive. See
http://cvs.debian.org/dak/?cvsroot=dak.

6http://incoming.debian.org
7The status of the individual buildds is available at http://www.buildd.net.
8The .changes file is generated as part of the build process for each architecture and identifies a

(set of) binary package(s). It must be cryptographically signed by a Debian developer for the package(s)
to be considered for inclusion in the Debian archive. See chapter 9.2.12.

109

4 Debian releases and archives

4.3 The official releases

Each of the three official Debian releases — stable, testing, and unstable — has
specific traits related to the role the release plays during the package life cycle and
the overall project. As a package usually enters the stable release by way of the
unstable and testing archives, the following sections provide an overview of the
three official releases in the same order that a new package encounters them on
its way into the Debian system.

A Debian system can be installed and maintained using any of the three releases
as package sources. In chapter 5.4.1 you see how a single release is selected, and
chapter 8.2.1 describes how they can be combined. Note that all three of the
official releases give you archive signatures for the index files of the corresponding
archive (see chapter 7.5). In appendix C.1.1 you can find information to help you
verify the keys used for the signatures.

4.3.1 The unstable release

As previously mentioned, the unstable release is in a state of continuous change.
unstable, which is also called sid9, is the workspace of Debian development. New
packages percolate into the archive and become part of sid in a somewhat chaotic
fashion. As a result, dependencies between packages break, only to be resolved
later, conflicts appear and disappear, and packages possibly do not meet the quality
standards of the rest of the archive. Furthermore, while maintainers take care not
to inconvenience users tracking the unstable release, sometimes drastic changes
in the packaged software hit the archive and can cause serious breakage on the
target system.

The term “unstable” also applies to the packaging of software. Occasionally, a main-
tainer uploads a package in a rush, oversees a detail or makes a mistake in the
packaging. The resulting package — if it makes it past the sanity checks — usually
does not play ball with the local system, or installs horribly dysfunctional software.
Even policy violations are possible. It is important to note that such policy viola-
tions are mostly restricted to misplaced files, but it should go without saying that
unstable is not suitable for production environments. Having said that, most De-
bian developers run unstable on their primary machines. If the occasional failed
dependency resolution is not fatal, unstable is quite a nice way to experience De-
bian — especially when there is a desire to contribute back to Debian with bug
reports or interesting arguments on mailing lists.

In fact, it is unlikely for unstable to be more fragile than other operating systems,
which are based on young software and whose developers try hard to publish the

9Sid is the name of the evil boy in Pixar’s Toy Story who continuously breaks toys. It is thus an
appropriate name for a release that can break a system. Conveniently, sid is also an acronym for “Still
in development.”

110

4.3 The official releases

system as soon as possible. It goes without saying that short development cycles
(such as Debian unstable) do not leave much room for testing, and therefore often
result in a plethora of bugs.

Note that “unstable” refers primarily to the archive and the packages, and only
indirectly to the software itself: software provided as part of Debian unstable may
in fact be quite stable since packages in unstable usually correspond to official
releases of the software. Thus it depends on the software author’s quality standards
how much runtime stability a programme needs to be part of an official upstream
release. Often, a software will be available in two versions: an official release (which
is often called “stable”), and a development release. If the latter is of any interest (or
if the upstream authors are overly conservative with version numbering), chances
are that a maintainer will provide pre-release packages for inclusion in Debian in
addition to the official version. While not a rule, the development version usually
comes in *-snapshot packages directly from the version control system to allow
Debian users to be truly on the bleeding edge. For example, gcc-snapshot provides
a bleeding edge version of the GNU compiler, while gcc provides a version deemed
stable by the gcc developers.

As regards security updates, unstable enjoys a similar kind of attention as the
stable release. While the security updates published by the security team might be
restricted to the version in the stable release, a new and fixed version will usually
become available in short time, and the maintainer will attribute special priority to
uploading a fixed package to unstable.

Dealing with an unstable system is not very different from dealing with an in-
stallation of Debian stable. Upgrades for unstable are available through APT, but
it is important to keep in mind that package upgrades in unstable have received
considerably less testing than packages distributed as part of an official upgrade to
Debian stable.

As the dependency information of packages in unstable can change, systems based
on packages from the unstable archive should be upgraded with apt-get --show-
upgraded dist-upgrade rather than with the plain APT upgrade mechanism. The
--show-upgraded option is not needed but advisable to be able to inspect the
changes proposed by APT before enacting them. In addition, tools such as apt-
listchanges and apt-listbugs (see chapter 5.11.2 and chapter 5.11.3 respectively)
are invaluable in assessing whether an upgrade is worth the trouble or involves
unnecessary dangers.

4.3.2 The testing release

An upload to the Debian archive is accompanied with an urgency specification,
coded into debian/changelog within the package. Normal uploads are of low ur-
gency, while security updates enjoy prioritised treatment due to their high (or even

111

4 Debian releases and archives

emergency) urgency. The urgency of an upload also determines when the uploaded
version of a particular package moves from unstable to testing.

Depending on the urgency, a given version of a package must have been in unsta-
ble 10 (low), 5 (medium), 2 (high), or 0 (emergency10) days before being considered
for testing. When a package is considered for promotion to testing, a number
of other criteria have to be met before it is moved. If a previous version of the
same package already exists in testing, the new version must have been built on
at least all architectures supported by the previous package, and it must not have
more release-critical bugs (see chapter 10.6.3) filed against it than the package in
testing. Furthermore, all of the package’s dependencies must be satisfiable within
testing, and its declared relations cannot break another package already in testing.

When all these criteria have been met, the archive scripts move the package to
testing, replacing any previous version11 . testing is therefore generally not affected
by the childhood diseases of packages as they hit unstable, but it is also not as
current as unstable.

testing seems like the ideal release for all but the most critical applications. It is not
on the bleeding but on the leading edge, and yet its contents has been scrutinised
more carefully than the software from unstable. It also fluctuates less than unsta-
ble, which provides for easier maintenance. In the past, the major disadvantage of
testing was the lack of security support. Security updates may already be delayed
when they percolate to the unstable archive, and at least another two day delay is
imposed before they are accepted into testing — provided all other requirements
are met. Therefore, security updates in testing are sometimes delayed by several
days, which is an important point to consider. Obviously, a home computer with
a dial-up line to the Internet still qualified for a testing installation, but machines
with a permanent Internet connection that offer services to the world, or machines
that host multiple untrusted users are probably better off using stable, or unstable
if that is an option.

Leading up to the release of sarge, the Debian testing security team has formed
to address this shortcoming. At time of writing, the team is still operating unoffi-
cially, mainly coordinating through the secure-testing-team mailinglist hosted on
lists.alioth.debian.org. An online record12 with daily updates keeps track of out-
standing security issues that persist in the testing archive. Depending on progress,
etch could be supported with security updates while it is the testing release.

Similarly to unstable, it is advisable to use apt-get --show-upgraded dist-upgrade
in place of apt-get upgrade because of the fluctuation in the set of packages pro-
vided in testing.

10Due to a limitation in the archive management script britney, it actually takes a day for emergency
uploads to trickle into testing.

11Previous releases are available in the daily snapshots of the archive: http://snapshot.debian.net
12http://merkel.debian.org/˜joeyh/testing-security.html

112

4.3 The official releases

4.3.3 The stable release

Whenever the goals for the next release have been met13, testing is frozen. During
the ensuing freeze cycle, no new features are allowed to enter testing, and the
developers concentrate on fixing bugs and providing additional translations. Espe-
cially bugs with severity above and including serious have to be fixed. These bugs
are labelled RC and must be solved before a release can be made. Packages with
outstanding RC bugs may be removed from the testing release during the freeze
cycle.

Once testing is ready for release, the previous stable release is obsoleted (but
archived14, and the stable and testing symlinks changed to point to the next re-
lease generation. For this reason, it is advisable to hardcode the release codename
in /etc/apt/sources.list, rather than its canonical name. Specifically, for a sarge
system, I recommend changing all occurrences of “stable” with “sarge.” While De-
bian release is unlikely to catch you off-guard, using the code names for the APT
archive allows an upgrade to the next official release on your own schedule, and
not when the symlinks in the archive change. When the next release follows, all
you need to do is replace “sarge” with “etch” and then dist-upgrade as usual (see
chapter 5.4.7).

As soon as a release has become the new stable, it becomes immutable. Security
updates are kept in a separate repository (see chapter 7.2), and neither the set of
packages nor the packages themselves are subject to change until the next offi-
cial release comes around. It may seem a little peculiar to have security updates
kept separate, but as with everything else, there is a reason for this procedure. Not
every administrator wants security updates. Larger corporations frequently main-
tain their own internal release and have policies in place that require the ability to
precisely identify the state of their machines. In such a case, fixes first need to be
scrutinised before being provided internally. If the underlying archive (stable) were
to change every other day, it would be impossible to maintain a consistent instal-
lation across hundreds of machines and simultaneously provide custom extensions
and updates.

At semi-regular intervals, security and other proposed updates (such as trivial bug-
fixes) are merged with the last official release to create the next revision of the
official release. These revisions (“stable dot releases” or simply “r-releases,”) are
identified by a specific suffix to the version number of the current stable release.
For instance, when this book was written, the official Debian release was Debian
3.0r3, which is the third revision of the release after woody became stable. When
a new dot release is published, it replaces the previous stable archive.

13http://release.debian.org
14http://archive.debian.org is the official archive address, and many mirrors feature /debian-

archive as a sibling of /debian, which holds /dists and /pool. At time of writing, the primary site has
not been reachable for a long time, and inquiries about its status have remained unanswered. Available
mirrors are listed on the distribution archives web page: http://www.debian.org/distrib/archive

113

4 Debian releases and archives

4.4 Unofficial APT archives

In addition to the three archives corresponding to the three official releases stable,
testing, and unstable, a number of other APT repositories exist, and can be easily
integrated with APT on systems that need them. The following sections introduce
the most important of these. While it is certainly possible to run Debian systems
for all purposes without these archives, the packages they contain may be needed
at times. In any case, it is good to know about their existence and purpose.

4.4.1 The experimental archive

The Debian archive also hosts the experimental release, which contains packages
that are not ready for public use, not even as part of unstable. Developers use this
space to share packages as part of the development cycle. Unless you want to take
part in this development (e.g. as a tester, or more actively), you can safely ignore
the experimental archive.

The following lines in /etc/apt/sources.list enable APT to install software from ex-
perimental (see chapter 5.4.1). As always, please make sure you use your closest
mirror instead (see chapter 5.4.1).

˜# cat <<EOF >> /etc/apt/sources.list

deb http://ftp.debian.org/debian experimental main

deb-src http://ftp.debian.org/debian experimental main

EOF

˜# apt-get update

The experimental archive contains new major versions for some of the software
found regularly in the Debian archive. For instance, APT 0.6 (see chapter 7.5.2) re-
sides in experimental, while version 0.5 is available from the three release archives.
The experimental archive is automatically deprioritised by APT so there is no need
to worry about upgrading all your packages to the available experimental versions.
This is accomplished with a special directive in the archive’s Release file. See chap-
ter 8.2.1 for more information:

˜$ getfile /dists/experimental/main/binary-i386/Release

˜$ grep NotAutomatic Release

NotAutomatic: yes

˜$ apt-cache policy apt

apt:

Installed: 0.5.27

Candidate: 0.5.27

Version Table:

0.6.25 0

1 http://ftp.debian.org experimental/main Packages

*** 0.5.27 0

114

4.4 Unofficial APT archives

500 http://ftp.debian.org sid/main Packages

100 /var/lib/dpkg/status

To install software from the experimental archive, pass the --target-release ex-
perimental option to APT:

˜# apt-get install --target-release experimental apt

[...]

Setting up apt (0.6.25) ...

4.4.2 The volatile archive

Debian’s stable archive does not change beyond security updates, and these do not
add new features (see chapter 4.3.3 and chapter 7). While administrators generally
value this stability highly, certain types of software must change over time, even on
the most stable systems. Prime candidates of such software include virus scanners,
spam filters, and other tools which operate on data that is expected to change
(such as whois).

While I was working on this book, a number of Debian developers started to con-
ceive a strategy of how to deal with software that needs to change to remain
usable. Such software was termed to be “volatile.” A draft of the strategy is avail-
able at http://volatile.debian.net, which also hosts an APT-accessible archive for
volatile software.

The goal of the volatile archive is to become a parallel to the security archive, and
allow administrators to pull in updates with the same confidence with which they
use the security archive. Changes will be limited to essential features and will only
happen in close cooperation with the respective maintainers. Furthermore, security
support for the packages in the volatile archive will be available.

To use software from the volatile archive, tell APT to use one of the mirrors found
in the official mirror list15 , and update APT

˜# cat <<EOF >> /etc/apt/sources.list

deb http://volatile.debian.net/debian-volatile sarge/volatile main

deb-src http://volatile.debian.net/debian-volatile sarge/volatile main

EOF

˜# apt-get update

[...]

The volatile archive uses a custom version scheme designed to integrate and not
conflict with the official packages from the main Debian archives (see chapter 5.7.5).
All index files in the archive are signed with cryptographic signatures (see chap-
ter 7.5), and information to validate the key used may be found in appendix C.1.2.

15http://volatile.debian.net/mirrors.html

115

4 Debian releases and archives

4.4.3 The amd64 archive

Even though the amd64 architecture is not yet officially supported by the Debian
project, the port is ready to be used (see chapter 4.5.2). You can find installation
and maintenance instructions at the port’s web page16.

Until it can be integrated with the main Debian archive, the amd64 architecture is
available from a separate APT repository. You can find details, as well as a list of
mirrors online17. The archive’s index files are signed with a separate key to ensure
package integrity (see chapter 7.5). Information about the key may be found in
appendix C.1.2.

4.4.4 The *-proposed-updates archives

The two directories stable-proposed-updates and testing-proposed-updates pro-
vide a way for developers to circumvent the normal package cycle via unstable
and testing into stable. Packages uploaded to these directories are considered for
manual inclusion by the respective release manager. Specifically, stable-proposed-
updates serves as the basis for the next dot release of Debian (see chapter 4.3.3).

Even though both directories host proper APT repositories, you are herewith dis-
couraged from using them directly. Software in either of these bypasses the regu-
lar Debian quality assurance surveillance and does not receive the same amount of
testing as software that progresses via unstable.

4.4.5 The backports.org archive

Compared to testing and unstable, the Debian stable release often contains out-
dated software. Furthermore, many packages are not available at all because they
have only been packaged recently. Even though single DEB files can be manually
downloaded from newer releases, versioned dependencies make this impossible. For
instance, upgrading postfix to version 2 (e.g. for policy server support) is not pos-
sible on a woody system without pulling in other packages from the next Debian
version (sarge):

˜# getfile pool/main/p/postfix/postfix_2.1.5-5_i386.deb

˜# dpkg --install postfix_2.1.5-5_i386.deb

[...]

dpkg: dependency problems prevent configuration of postfix:

postfix depends on libc6 (>= 2.3.2.ds1-4); however:

Version of libc6 on system is 2.2.5-11.5

[...]

16http://www.debian.org/ports/amd64
17http://amd64.debian.net/README.mirrors.html

116

4.4 Unofficial APT archives

Undoubtedly, users of Debian stable are not going to be in favour of upgrading
libc6; it would be a major change to a system, puting its stability at risk. An
alternative would be to download the source and recompile the package against
the libraries available in stable. If you have to do this more than once, the process
becomes tedious and error-prone.

The backports.org archive18 attempts to close this hole and distributes packages
that have been recompiled in exactly this way. To get postfix version 2 installed on
a woody system, the following line in /etc/apt/sources.list is needed. Please use
the mirrors page19 to find the mirror closest to you, and use that mirror instead of
the main distribution server.

˜# cat <<EOF >> /etc/apt/sources.list

deb http://www.backports.org/debian woody postfix

EOF

˜# apt-get update

˜# apt-get install postfix

[...]

Setting up postfix (2.1.4-2.backports.org.1) ...

[...]

As you may note, the required package is listed as part of the repository spec-
ification. The backports.org archive contains more than 450 packages, and you
probably do not want all your installed packages to be upgraded to the latest back-
port20. Thus, backports.org allows you to specify precisely the set of packages you
want to include. You can also specify multiple packages on a single line:

˜# cat <<EOF >> /etc/apt/sources.list

deb http://www.backports.org/debian woody postfix subversion

EOF

As we will be discussing the APT sources syntax in chapter 5.4.1, you can take the
above line as a way of making the woody backports for postfix and subversion
available for direct installation with APT from the backports.org archive. Moreover,
the line also ensures that backports of all dependencies can be installed with similar
ease, if necessary.

Please note that the packages provided in the backports.org archive are not offi-
cially endorsed and come without any warranty. backports.org is not an official
part of the Debian project, even though it is maintained and supported exclu-
sively by official Debian developers. In particular, its packages have not undergone
standard Debian quality assurance verifications, and have not received the same
amount of testing as official Debian packages.

18http://www.backports.org
19http://www.backports.org/mirrors.html
20If you do, you can use the pseudo package name all in /etc/apt/sources.list instead.

117

4 Debian releases and archives

That said, the source used to produce the packages in the backports.org archive
comes directly from the official Debian archive and should therefore be as secure
as the original version in the respective archive. Still, it is important to keep in
mind that an extra delay exists for security fixes to percolate to the backports.org
archive.

As a last note, if you are using a backported package from this archive, please re-
frain from reporting bugs against the Debian BTS. Instead, use the changelog.Deb-
ian.gz file to figure out the backporter’s address to which to submit any bug reports,
or send them to the backports.org mailing list21 . The list is also the primary source
of support for packages from the backports.org archive.

4.4.6 The apt-get.org directory

Setting up an APT repository is quite simple (as shown in chapter 9.3). Over the
years, unofficial repositories have sprung up all over the place, providing useful
Debian packages that are not included in Debian, or which are modified for specific
purposes. The web site at http://apt-get.org serves as a directory for these sites.

The database can be searched by architecture and package name (or even a reg-
ular expression). The result encompasses all matching and registered repositories.
For each entry, a short description, the matching package(s) (along with version
information), and the necessary lines for /etc/apt/sources.list are provided. It is
impossible to make an authoritative statement on the security, integrity, or sta-
bility of packages in the archives referenced from apt-get.org archive directory. If
you use packages from sources listed here, you should be aware that they are pack-
aged by people not necessarily connected to or supported by the Debian project.
In particular, it would not be difficult to register an APT archive containing tro-
janed software. The directory has no guidelines, restrictions, or quality verification
procedures governing the archives it lists. You have to decide for yourself which
repositories you want to trust.

4.4.7 Christian Marillat’s multimedia archive

Due to the freedom requirements on Debian packages, which the Debian project set
in stone in the DFSG, many useful multimedia programmes cannot be distributed
with the official Debian archive. Even though Debian is working hard with the
respective authors to release the software under a free licence, progress is slow at
times.

Christian Marillat, a Debian developer, maintains an unofficial Debian archive with
prominent multimedia content. His archive, which is described on his web page22,

21http://lists.backports.org
22http://debian.video.free.fr

118

4.5 Architecture support

is host to popular software, such as Mplayer, lame, transcode, and various video
codecs. Christian maintains packages for this software unofficially, which is more
of an indication of the level of support he can provide, than the quality of the
packages themselves. Christian is an official Debian developer, and his archive is
signed to allow for integrity verification (see chapter 7.5).

As a side note, Mplayer is actually available under a DFSG-compatible license and
official packages have been prepared at time of writing of this book. Unfortunately,
sarge will not include these packages.

4.5 Architecture support

Although the consumer market is full of computers powered (and heated) by deriva-
tives of Intel’s x86 architecture, PowerPC machines, and the latest generation of
64 bit processors by AMD and Intel, a significant number of other architectures
also profit from the support by the Linux kernel. Linux is gaining popularity as
operating system for embedded devices (e.g. with arm or mips processors), profes-
sional servers (e.g. using sparc, alpha, and hppa chips), and entire mainframes (e.g.
S/390-based). All of these architectures are supported by Debian, as well as some
others.

Nevertheless, the Linux kernel does not make up an operating system by itself.
The kernel is merely the interface between hardware and the user-space soft-
ware. As large parts of the common user-space software (as well as the kernel
itself) are written in medium-level languages (which require a compiler to gener-
ate processor-specific assembly code), sensible support for a processor architecture
requires the support by the kernel as well as by the entire user-space software col-
lection that makes up a Unix system. As the “universal operating system,” Debian
GNU/Linux extends the architectural support of the Linux kernel with the GNU
user-space utilities on eleven different processor architectures. More supported
architectures are in preparation.

To support an architecture means that all of Debian has been enabled to work on
that specific architecture. Moreover, it also means that the installation feels like
any other Debian system, independently of the processor architecture powering
it. Therefore, the Debian operating system can be seen as a layer of abstraction,
allowing unified system administration across different types of machines. With
the exception of packages not applicable to all architectures (such as memtest86,
a memory tester for the x86 architecture), all packages available in the archive
have been built for every one of the eleven supported architectures.

The combination of Debian, the underlying kernel, the user-space collection, and a
processor architecture is called a “port” of Debian. The official Debian GNU/Linux
ports (the architectures on which Debian GNU/Linux runs)23 are:

23http://www.debian.org/ports

119

4 Debian releases and archives

i386
Being the first architecture supported by Linux, the IA-32 architecture found
on x86-compatible chips by AMD, Cyrix, Intel, and others, is also Debian’s
most popular architecture.

ia64
Together with HP, Intel finally abandoned full x86-(backward-)compatibility
with the 64-bit IA-64 architecture. Debian started supporting ia64 with the
woody release. The ia64 port allows the use of 32 bit code through software
emulation.

powerpc
Out of the cooperation between Apple, IBM, and Motorola grew the PowerPC
chip, which powers IBM’s RS/6000 line as well as Apple’s PowerMac series.
Support for the powerpc architecture was added in potato.

m68k
The Motorola 68000 series of processors powers a wide variety of computer
systems, most notably the sun3 workstation series, as well as the personal
computers by Amiga, Apple Macintosh, and Atari. Debian added support for
the m68k architecture with the hamm release.

sparc
The Sun SPARC architecture powers the Sun SPARCstation workstation series
as well as some models of the sun4 family. Similar to the powerpc port, the
sparc architecture sports a 64 bit kernel but comes with a 32 bit userland. As
an add-on to the sparc port, the sparc64 sub-architectures aims to enable
64 bit user-space applications. Debian features support for sparc since the
release of slink.

alpha
Also with slink came support for the 64-bit Reduced Instruction Set Com-
puter (RISC) architecture Alpha, developed by Digital (Digital Equipment Cor-
poration, DEC).

arm
The ARM processor is a low-power RISC chip by Acorn and Apple. Later, Dig-
ital and Intel joined to produce the improved StrongARM chips based on the
arm architecture. First supported in potato, ARM processors are commonly
found in mobile and embedded devices.

mips
Used primarily in SGI machines, Cisco routers and gaming devices by Sony
and Nintendo, this RISC chip has been supported since woody.

120

4.5 Architecture support

mipsel
The “little-endian” brother of the mips architecture, found primarily in DEC-
stations, also joined the Debian architectures family with woody ’s release.

hppa
Hewlett-Packard’s PA-RISC architecture found support from Debian with the
woody release. The hppa architecture is mainly found in HP machines run-
ning HP/UX (or Debian).

s390
The IBM S/390 mainframe (reborn as eserver zSeries in 2001) was officially
adopted by Debian a short time later with the woody release. The 64-bit
architecture power highly powerful chips optimised for parallel computing.

The advantages of supporting multiple processor architectures are self-evident.
First, Debian gives a larger user base the ability to run Linux, as little to none vi-
able user-space collections exist for users of non-Intel processor machines. Second,
corporations and institutions, whose IT infrastructure has grown over years with a
museum-like diversity of server architectures, are able to deploy Debian as a single
operating system across all existing hardware. Thus, the costs of unifying system
administration are kept as low as possible with Debian.

4.5.1 80386 — the processor

With gcc-3.3 1:3.3ds6-0pre6 (and also in some versions of gcc-3.2), the compiler
started using the bswap, xadd, and cmpxchg instructions for code optimisation.
These instructions are not available on real 80386 processors, but were added to the
Intel instruction set with the 80486 processor series. With the packages for kernel
versions 2.4.24 and 2.6.0, Debian added a patch to its Linux kernels to simulate
these instructions in software on true 80386 processors. Unfortunately, the patch
is known to be buggy and somewhat unmaintained.

The 80386 is an incredibly old and slow processor, but Debian would like to con-
tinue its support (it actively supports other architectures that are even less power-
ful than the 80386, too). However, the upgrade from woody to sarge puts systems
with true 80386 processors into an unfortunate catch-22 situation24: sarge’s libc6
and libstdc++5 both use the aforementioned instructions. Updating either of these
libraries will hose the system until a new kernel is installed, but a new kernel cannot
be installed due to a dependency on modutils (2.4 kernels) or module-init-tools
(2.6 kernels), which in turn depend on a version of libc6 not available in woody.

24Derived from the (excellent) book “Catch-22” by Joseph Heller, such a situation is an impossible
situation where you are prevented from doing one thing until you have done another thing, but you
cannot do the other thing until you have done the first.

121

4 Debian releases and archives

At time of writing, the project is still discussing the possible steps to take. The
suggestion for a special upgrade kernel was dismissed because of complexity and
distribution issues. The preferred method to solve this would be the development
of some user-space solution to emulate the missing instructions. If such a solution
cannot be found, Debian will probably drop 80386 support altogether25. Debian
sarge does not really run properly on one of these chips, largley due to memory
requirements that cannot be fulfilled. Users of embedded 80386 machines typically
have their own kernels to minimise memory usage.

Should 80386 processor support be dropped, the Debian project will look into to
renaming its i386 architecture to i486 to indicate the change. However, the change
might break existing scripts, as “i386” has been around forever. Further investiga-
tion will show. In any case, sarge supports the 80386 processor.

4.5.2 The amd64 architecture

While I was writing this book, Debian was ported to the amd64 architecture. Being
a very young port still, it is not distributed as an official port with Debian sarge nor
contained in the official archive. Still, it is mostly complete and available for instal-
lation from its own archive (see chapter 4.4.3). At time of writing, four different
ports exist for the amd64 architecture:

sarge
the 64 bit port of Debian sarge. The Debian amd64 team is planning to
provide security updates until the amd64 architecture is part of the official
archive.

pure64
the 64 bit port of Debian etch and sid. This port will be integrated with the
main Debian archive in the near future, and the 64 bit port of sarge will be
merged in.

gcc3.4
this port is identical to the pure64 port, rebuilt with version 3.4 of the gcc

compiler.

multi-arch
an effort to integrate the multi-arch concept (see below) with amd64. Plans
are to merge this port with pure64 once it becomes part of Debian unstable.

Currently, the pure64 port is the recommended port for amd64 systems. At time
of writing, it was not possible to upgrade an i386 installation on an AMD 64 bit
processor to any of the amd64 ports. However, work is in progress to allow for this.

25http://lists.debian.org/debian-release/2004/10/msg00027.html

122

4.5 Architecture support

4.5.3 Multi-arch

With the advent of affordable 64 bit processors like the AMD Athlon 64, Debian
has intensified its efforts to address the challenge of integrating 32 bit and 64 bit
applications on the same system. Most 64 bit architectures support native or em-
ulated 32 bit code execution, but the applications and libraries are incompatible
across the two register sizes. Instead of implementing quick hacks or duplicating
packages, Debian is trying to work with the LSB to come up with a method of inte-
grating multiple architectures on a single machine in a scalable and well-designed
way. Under the working title “multi-arch support”, work has begun to address
the challenge, and small test environments have already been put in place to help
develop a policy26 .

The existing 64 bit architectures (ia64 and sparc64) use separate directories to hold
the 32 bit and 64 bit versions of the installed libraries. The approach is commonly
referred to as “biarch” and is not free of problems. Apart from breaking the rules of
the FHS (see chapter 5.7.4), the approaches differ and do not scale to other archi-
tectures, or similar changes in the future. As multi-arch reaches production status,
current 64 bit architectures are expected to switch to using it. In addition, with
multi-arch, Debian will be able to add full support for other 64 bit architectures,
including powerpc64, mips64/mipsel64, hppa64, sparc64, and s390x, within a
short time27.

Until multi-arch is ready for production use, special arrangements have to be made
to run 32 bit applications on 64 bit installations. One good technique is to use of a
chroot managed by dchroot (see chapter 8.3.1).

26You can find more information about multi-arch at http://people.debian.org/˜taggart/multiarch
27Some of these architectures (such as sparc64) are already supported, but use the deprecated

biarch approach.

123

